Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
World J Gastroenterol ; 30(9): 1011-1017, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577182

RESUMO

With continuous population and economic growth in the 21st century, plastic pollution is a major global issue. However, the health concern of microplastics/ nanoplastics (MPs/NPs) decomposed from plastic wastes has drawn public attention only in the recent decade. This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ, which is one of the primary routes that MPs/NPs enter human bodies. The interrelated mechanisms including oxidative stress, hepatocyte energy re-distribution, cell death and autophagy, as well as immune responses and inflammation, were also featured. In addition, the disturbance of microbiome and gut-liver axis, and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease, steatohepatitis, liver fibrosis, and cirrhosis were briefly discussed. Finally, we discussed potential directions in regard to this trending topic, highlighted current challenges in research, and proposed possible solutions.


Assuntos
Microplásticos , Hepatopatia Gordurosa não Alcoólica , Humanos , Microplásticos/efeitos adversos , Plásticos , Cirrose Hepática
2.
N Engl J Med ; 390(10): 900-910, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38446676

RESUMO

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging as a potential risk factor for cardiovascular disease in preclinical studies. Direct evidence that this risk extends to humans is lacking. METHODS: We conducted a prospective, multicenter, observational study involving patients who were undergoing carotid endarterectomy for asymptomatic carotid artery disease. The excised carotid plaque specimens were analyzed for the presence of MNPs with the use of pyrolysis-gas chromatography-mass spectrometry, stable isotope analysis, and electron microscopy. Inflammatory biomarkers were assessed with enzyme-linked immunosorbent assay and immunohistochemical assay. The primary end point was a composite of myocardial infarction, stroke, or death from any cause among patients who had evidence of MNPs in plaque as compared with patients with plaque that showed no evidence of MNPs. RESULTS: A total of 304 patients were enrolled in the study, and 257 completed a mean (±SD) follow-up of 33.7±6.9 months. Polyethylene was detected in carotid artery plaque of 150 patients (58.4%), with a mean level of 21.7±24.5 µg per milligram of plaque; 31 patients (12.1%) also had measurable amounts of polyvinyl chloride, with a mean level of 5.2±2.4 µg per milligram of plaque. Electron microscopy revealed visible, jagged-edged foreign particles among plaque macrophages and scattered in the external debris. Radiographic examination showed that some of these particles included chlorine. Patients in whom MNPs were detected within the atheroma were at higher risk for a primary end-point event than those in whom these substances were not detected (hazard ratio, 4.53; 95% confidence interval, 2.00 to 10.27; P<0.001). CONCLUSIONS: In this study, patients with carotid artery plaque in which MNPs were detected had a higher risk of a composite of myocardial infarction, stroke, or death from any cause at 34 months of follow-up than those in whom MNPs were not detected. (Funded by Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale and others; ClinicalTrials.gov number, NCT05900947.).


Assuntos
Doenças das Artérias Carótidas , Microplásticos , Placa Aterosclerótica , Humanos , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/etiologia , Estenose das Carótidas/patologia , Microplásticos/efeitos adversos , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/mortalidade , Placa Aterosclerótica/química , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/mortalidade , Placa Aterosclerótica/patologia , Plásticos/efeitos adversos , Estudos Prospectivos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade , Fatores de Risco de Doenças Cardíacas , Endarterectomia das Carótidas , Doenças das Artérias Carótidas/etiologia , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/cirurgia , Seguimentos
4.
J Cosmet Dermatol ; 23(3): 766-772, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38226412

RESUMO

BACKGROUND: Microplastics (MPs) and nanoplastics (NPs) have become a growing concern in dermatology due to their widespread presence in cosmetic formulations and the environment. These minuscule synthetic polymer particles prompt an essential exploration of their potential impact on dermatological homeostasis. AIMS: This study aims to investigate the effects of MPs and NPs on the integumentary system. Specifically, it seeks to understand the potential cutaneous alterations, inflammatory responses, and disruptions to the skin's physiological functions caused by these synthetic particles. PATIENTS/METHODS: The investigation involves a comprehensive analysis of emerging research on MPs and NPs. This includes their presence in cosmetic formulations and environmental pervasiveness. The study delves into their capacity to breach the cutaneous barrier, raising concerns about the implications of prolonged exposure. RESULTS: Evidence suggests that MPs and NPs may indeed incite cutaneous alterations, provoke inflammatory responses, and disturb the homeostasis of the skin's physiological functions. Their small dimensions enhance their capability to breach the cutaneous barrier, further emphasizing the apprehensions associated with prolonged exposure. CONCLUSIONS: While a precise understanding of the implications of MPs and NPs on dermatological health remains an ongoing scientific endeavor, this study underscores the growing significance of these synthetic particles. The findings emphasize the need for proactive measures to safeguard both individual well-being and environmental preservation in the context of dermatological health.


Assuntos
Dermatologia , Microplásticos , Humanos , Microplásticos/efeitos adversos , Plásticos , Pele , Homeostase
5.
Fish Shellfish Immunol ; 143: 109205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918582

RESUMO

Polystyrene microplastics (PM) is a pressing global environmental concern, posing substantial risks to aquatic ecosystems. Microalgal astaxanthin (MA), a heme pigment, safeguards cells against oxidative damage induced by free radicals, which contributes to various health conditions, including aging, inflammation and chronic diseases. Herein, we investigated the potential of MA in ameliorating the immunotoxicity of PM on carp (Cyprinus carpio L.) based on head kidney lymphocytes treated with PM (250 µM) and/or MA (100 µM). Firstly, CCK8 results showed that PM resulted in excessive death of head kidney lymphocytes. Secondly, head kidney lymphocytes treated with PM had a higher proportion of necroptosis, and the levels of necroptosis-related genes in head kidney lymphocytes were increased. Thirdly, the relative red fluorescence intensity of JC-1 and MitoSox showed decreased mitochondrial membrane potential and increased mtROS in head kidney lymphocytes treated with PM. MitoTracker® Green FM fluorescence analysis revealed enhanced mitochondrial Ca2+ levels in PM-treated lymphocytes, corroborating the association between PM exposure and elevated intracellular Ca2+ dynamics. PM exposure resulted in upregulation of calcium homeostasis-related gene (Orail, CAMKIIδ and SLC8A1) in lymphocytes. Subsequent investigations revealed that PM exposure reduced miR-25-5p expression while increasing levels of MCU, MICU1, and MCUR1. Notably, these effects were counteracted by treatment with MA. Furthermore, PM led to the elevated secretion of inflammatory factors (IFN-γ, IL-1ß, IL-2 and TNF-α), thereby inducing immune dysfunction in head kidney lymphocytes. Encouragingly, MA treatment effectively mitigated the immunotoxic effects induced by PM, demonstrating its potential in ameliorating necroptosis, mitochondrial dysfunction and immune impairment via regulating the miR-25-5p/MCU axis in lymphocytes. This study sheds light on safeguarding farmed fish against agrobiological threats posed by PM, highlighting the valuable applications of MA in aquaculture.


Assuntos
Carpas , MicroRNAs , Animais , Microplásticos/efeitos adversos , Poliestirenos/toxicidade , Plásticos/efeitos adversos , Carpas/metabolismo , Necroptose , Ecossistema , Rim Cefálico/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Linfócitos/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Homeostase
6.
Sci Total Environ ; 892: 164758, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37308024

RESUMO

Plastic pollution is a widespread issue that poses a threat to agroecosystems. Recent data on microplastic (MP) pollution from compost and its application to soil have highlighted the potential impact of micropollutants that may be transferred from compost. Thus, we aim with this review to elucidate the distribution-occurrence, characterization, fate/transport, and potential risk of MPs from organic compost to gain comprehensive knowledge and mitigate the adverse impacts of compost application. The concentration of MPs in compost was up to thousands of items/kg. Among micropollutants, fibers, fragments, and films are the most common, with small MPs having a higher potential to absorb other pollutants and cause harm to organisms. Various synthetic polymers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polyester (PES), and acrylic polymers (AP), have been widely used of plastic items. MPs are emerging pollutants that can have diverse effects on soil ecosystems, as they can transfer potential pollutants from MPs to compost and then to the soil. Following the microbial degradation scheme, the transfer chain from plastics to compost to soil can be broken down into main stages, i.e., colonization - (bio)fragmentation - assimilation - and mineralization. Microorganisms and adding biochar play an essential role during composting, which can be an effective solution to enhance MP degradation. Findings have shown that stimulating free radical generation could promote the biodegradation efficacy of MPs and possibly remove their occurrence in compost, thereby reducing their contribution to ecosystem pollution. Furthermore, future recommendations were discussed to reduce ecosystem risks and health challenges.


Assuntos
Biodegradação Ambiental , Compostagem , Poluição Ambiental , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Agricultura/métodos , Ecossistema , Poluição Ambiental/efeitos adversos , Poluição Ambiental/análise , Microplásticos/efeitos adversos , Microplásticos/análise , Microplásticos/metabolismo , Poluentes do Solo/efeitos adversos , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
7.
Environ Pollut ; 322: 121202, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736819

RESUMO

The production and application of nanoplastics has been increased during decades, and the enterotoxicity caused by their bioaccumulation has attracted vast attention. Maltol was proved to exert a protective effect on gut damage induced by carbon tetrachloride and cisplatin, indicating its confrontation with nanoplastics-induced intestinal toxicity. To explore the ameliorative effects of maltol on polystyrene nanoplastics (PS)-mediated enterotoxicity and the underlying mechanism, the mice were exposed to PS (100 mg/kg), combining with or without the treatment of maltol treatment at 50 and 100 mg/kg. We found PS exposure caused intestinal barrier damage and enterocyte apoptosis, while lysosomal dysfunction and autophagic substrate degradation arrest in enterocytes of mice were also observed. In addition, PS exacerbated the disturbance of the intestinal microbial community, affected the abundance of lysosome and apoptosis-related bacterial genes, and decreased the number of known short-chain fatty acid (SCFA) producing bacteria. However, those alterations were improved by the maltol treatment. Maltol also protected the human intestinal Caco-2 cells from PS-induce damages. Mechanistic studies showed maltol promoted TFEB nuclear translocation through the AMPK/mTOR signaling pathway to restore lysosomal function and reduce autophagy dependent apoptosis. The findings in the present work might help to elucidate the potential molecular mechanisms of PS-induced enterotoxicity. For the first time to our knowledge, the protective effect of maltol on PS-induced intestinal injury was studied from multiple perspectives, which provided a potential therapeutic approach for diseases caused by environmental pollution.


Assuntos
Microbioma Gastrointestinal , Poliestirenos , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/farmacologia , Células CACO-2 , Microplásticos/efeitos adversos , Microplásticos/farmacologia , Poliestirenos/efeitos adversos , Poliestirenos/toxicidade , Serina-Treonina Quinases TOR/metabolismo
8.
Rev Environ Health ; 38(1): 97-109, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-34973052

RESUMO

Today microplastics (MPs) have received worldwide attention as an emerging environmental pollution which is one of the four major global environmental threat and health hazard to human as well. Unfortunately, MPs have been founded in the all environments and media include air, water resources, sediments, and soil. It should not be forgotten MPs have also been detected in food and processing products like tuna. MPs can be ingested by marine organisms such as zooplankton, fish and birds. Accumulation and distribution of MPs by commercially important aquatic organisms is expected to lead to greater exposure risk for human populations with possible adverse effects over time. The aim of this work was to review the published literature regarding the contamination of commercial fish muscle for human consumption. Furthermore, a short revision of the environmental contamination and human health effects by MPs are included. We also estimated human daily intake considering the worldwide contamination of commercial fish muscle ranged from 0.016 items/g muscle of fish to 6.06 items/g muscle of fish. MPs have been found in 56.5% of the commercial fish samples analysed here. As fish is used in human food table across the word, they constitute a long-term exposure route for all humans and raise the concern about the potential public health risk.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/efeitos adversos , Microplásticos/análise , Plásticos/efeitos adversos , Poluição Ambiental/análise , Peixes , Saúde Pública , Monitoramento Ambiental , Poluentes Químicos da Água/análise
11.
PeerJ ; 10: e13618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910776

RESUMO

The continuous increase in the production of synthetic plastics for decades and the inadequate disposal of plastic waste have resulted in a considerable increase of these materials in aquatic environments, which has developed into a major environmental concern. In addition to conventional parameters, the relevance of the environmental monitoring of microplastics (MPs) and nanoplastics (NPs) has been highlighted by the scientific community due to the potential adverse effects these materials pose to the ecosystem as well as to human health. The literature has registered an increasing interest in understanding the mechanisms, at the molecular level, of the interaction between NPs and other compounds using molecular simulation techniques. The present review aims to: (i) summarize the force fields conventionally used to describe NPs by molecular simulations; (ii) discuss the effects of NPs in the structural and dynamical properties of biological membranes; (iii) evaluate how NPs affect the folding of proteins; (iv) discuss the mechanisms by which NPs adsorb contaminants from the environment. NPs can affect the secondary structure of proteins and change the lateral organization and diffusion of lipid membranes. As a result, they may alter the lipid digestion in the gastrointestinal system representing a risk to the assimilation of the nutrients by humans. The adsorption of contaminants on MPs and NPs can potentiate their harmful effects on human health, due to a possible synergism. Therefore, understanding the mechanisms involved in these interactions is crucial to predict dangerous combinations and outline action strategies that reduce negative impacts on ecosystems and human health. Depending on the chemical properties of contaminants and NPs, electrostatic and/or van der Waals interactions can be more relevant in explaining the adsorption process. Finally, we conclude by highlighting gaps in the literature and the critical aspects for future investigations.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/efeitos adversos , Microplásticos/efeitos adversos , Ecossistema , Poluentes Químicos da Água/análise , Lipídeos
12.
Food Chem Toxicol ; 167: 113315, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863481

RESUMO

With the widespread use of plastics, microplastics (MPs) and di(2-ethylhexyl) phthalate (DEHP) have become emerging environmental pollutants. The combined toxicity of MPs and DEHP on the mouse pancreas and the specific mechanism of toxicity remain unclear. To establish in vitro and in vivo models to address these questions, mice were continuously exposed to 200 mg/kg/d DEHP and 10 mg/L MPs for 4 weeks. In vitro, MIN-6 cells were treated with 200 µg/mL MPs and 200 µM DEHP for 24 h. Based on toxicity assessed using CCK8 of the equivalent TU binary mixture, the IC50 of the TU-mix of DEHP and MPs 0.692 < 0.8, indicating a synergistic effect of the two toxicants. Meanwhile, our data revealed that compared to the control group, MPs and DEHP combined treatment increased ROS levels, inhibited the activity, and enhanced the expression of GRP78, and CHOP. Simultaneously, activated CHOP decreased the expression of Bcl-2, and increased the expression of Bax. In conclusion, DEHP and MPs synergistically induce oxidative stress, and activate the GRP78/CHOP/Bcl-2 pathway to induce pancreatic apoptosis in mice. Our finding provides a new direction for the research on the specific mechanism of MPs and DEHP combined toxicity.


Assuntos
Dietilexilftalato , Chaperona BiP do Retículo Endoplasmático , Genes bcl-2 , Microplásticos , Estresse Oxidativo , Pâncreas , Fator de Transcrição CHOP , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Dietilexilftalato/toxicidade , Chaperona BiP do Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Genes bcl-2/genética , Genes bcl-2/fisiologia , Camundongos , Microplásticos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Ácidos Ftálicos , Plásticos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
13.
PeerJ ; 10: e13503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722253

RESUMO

Background: The environmental pollution by microplastics is a global problem arising from the extensive production and use of plastics. Small particles of different plastics, measured less than 5 mm in diameter, are found in water, air, soil, and various living organisms around the globe. Humans constantly inhale and ingest these particles. The associated health risks raise major concerns and require dedicated evaluation. Objectives: In this review we systematize and summarize the effects of microplastics on the health of different animals. The article would be of interest to ecologists, experimental biologists, environmental physicians, and all those concerned with anthropogenic environmental changes. Methodology: We searched PubMed and Scopus from the period of 01/2010 to 09/2021 for peer-reviewed scientific publications focused on (1) environmental pollution with microplastics; (2) uptake of microplastics by humans; and (3) the impact of microplastics on animal health. Results: The number of published studies considering the effects of microplastic particles on aquatic organisms is considerable. In aquatic invertebrates, microplastics cause a decline in feeding behavior and fertility, slow down larval growth and development, increase oxygen consumption, and stimulate the production of reactive oxygen species. In fish, the microplastics may cause structural damage to the intestine, liver, gills, and brain, while affecting metabolic balance, behavior, and fertility; the degree of these harmful effects depends on the particle sizes and doses, as well as the exposure parameters. The corresponding data for terrestrial mammals are less abundant: only 30 papers found in PubMed and Scopus deal with the effects of microplastics in laboratory mice and rats; remarkably, about half of these papers were published in 2021, indicating the growing interest of the scientific community in this issue. The studies demonstrate that in mice and rats microplastics may also cause biochemical and structural damage with noticeable dysfunctions of the intestine, liver, and excretory and reproductive systems. Conclusions: Microplastics pollute the seas and negatively affect the health of aquatic organisms. The data obtained in laboratory mice and rats suggest a profound negative influence of microplastics on human health. However, given significant variation in plastic types, particle sizes, doses, models, and modes of administration, the available experimental data are still fragmentary and controversial.


Assuntos
Microplásticos , Plásticos , Humanos , Animais , Camundongos , Ratos , Microplásticos/efeitos adversos , Plásticos/efeitos adversos , Poluição Ambiental/efeitos adversos , Invertebrados , Organismos Aquáticos , Mamíferos
14.
Life Sci ; 295: 120404, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35176278

RESUMO

AIMS: Plastic particles (PP) pollution is a global environmental concern. Although the reproductive toxicity of PP is primarily understood for invertebrates, the evidence for mammals is still fragmented. We used a systematic review framework to investigate the reproductive impact of microplastics and nanoplastics (MNP) on mammals. MATERIALS AND METHODS: Research records were screened from Embase, Medline, Scopus and Web of Science. Twelve original papers were identified and reviewed. Immunological, oxidative and morphofunctional outcomes, and the risk of bias in all studies reviewed were analyzed. KEY FINDINGS: These studies indicated that PP can accumulate in the gonads, triggering seminiferous degeneration, Sertoli cells death, blood-testis barrier disruption, sperm degeneration, malformation, reduced number and mobility, ovarian cysts, reduced follicular growth and granulosa cells death. Gonadal damage was associated with upregulation of prooxidant mediators (oxygen reactive species, lipid and DNA oxidation), cell death, proinflammatory molecular pathways and cytokines, as well as inhibition of enzymatic and non-enzymatic antioxidant defense mechanisms. Spermatogenesis, folliculogenesis, testosterone, progesterone and estrogen levels were also impaired in PP-treated animals, which were potentially associated with down-regulation of molecules involved in germ cells microstructural organization (occludin, N-cadherin, ß-catenin and connexin 43) and steroidogenesis, such as hydroxysteroid dehydrogenases, steroidogenic acute regulatory proteins, follicle stimulating and luteinizing hormones. Selection, performance and detection bias were the main limitations identified. SIGNIFICANCE: Current evidence indicates that PP can induce dose-dependent microstructural and functional gonadal damage, which is orchestrated by pro-oxidant and pro-inflammatory mechanisms that disrupt genes, molecular effectors, and hormones that control spermatogenesis and folliculogenesis.


Assuntos
Genitália/efeitos dos fármacos , Microplásticos/efeitos adversos , Reprodução/efeitos dos fármacos , Animais , Estrogênios , Feminino , Células Germinativas/efeitos dos fármacos , Células da Granulosa/metabolismo , Inflamação , Mucosa Intestinal/efeitos dos fármacos , Hormônio Luteinizante , Masculino , Mamíferos/metabolismo , Mamíferos/fisiologia , Folículo Ovariano/metabolismo , Ovário , Estresse Oxidativo , Plásticos/efeitos adversos , Progesterona , Células de Sertoli/metabolismo , Espermatogênese , Testículo , Testosterona
15.
Sci Rep ; 12(1): 1468, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087129

RESUMO

Investigations of encounters between corals and microplastics have, to date, used particle concentrations that are several orders of magnitude above environmentally relevant levels. Here we investigate whether concentrations closer to values reported in tropical coral reefs affect sediment shedding and heterotrophy in reef-building corals. We show that single-pulse microplastic deposition elicits significantly more coral polyp retraction than comparable amounts of calcareous sediments. When deposited separately from sediments, microplastics remain longer on corals than sediments, through stronger adhesion and longer periods of examination by the coral polyps. Contamination of sediments with microplastics does not retard corals' sediment clearing rates. Rather, sediments speed-up microplastic shedding, possibly affecting its electrostatic behaviour. Heterotrophy rates are three times higher than microplastic ingestion rates when corals encounter microzooplankton (Artemia salina cysts) and microplastics separately. Exposed to cysts-microplastic combinations, corals feed preferentially on cysts regardless of microplastic concentration. Chronic-exposure experiments should test whether our conclusions hold true under environmental conditions typical of inshore marginal coral reefs.


Assuntos
Antozoários/metabolismo , Microplásticos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Artemia/metabolismo , Recifes de Corais , Sedimentos Geológicos/química , Processos Heterotróficos , Microplásticos/química , Eletricidade Estática , Poluentes Químicos da Água/química , Zooplâncton/metabolismo
16.
PLoS One ; 16(11): e0260181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34788346

RESUMO

Due to its increasing production, durability and multiple applications, plastic is a material we encounter every day. Small plastic particles from the µm to the mm range are classified as microplastics and produced for cosmetic and medical products, but are also a result of natural erosion and decomposition of macroplastics. Although being omnipresent in our environment and already detected in various organisms, less is known about the effects of microplastics on humans in general, or on vascular biology in particular. Here we investigated the effects of carboxylated polystyrene microplastic particles (PS, 1 µm) on murine endothelial and immune cells, which are both crucially involved in vascular inflammation, using in vitro and in vivo approaches. In vitro, PS induced adhesion molecule expression in endothelial cells with subsequent adhesion of leukocytes both under static and flow conditions. In monocytic cells, PS enhanced pro-inflammatory cytokine expression and release. Accordingly, administering mice with PS led to enhanced aortic expression of cytokines and adhesion molecules. Furthermore, we identified neutrophils as the PS-clearing blood leukocyte population. The findings from this study for the first time indicate polystyrene microplastic as a new environmental risk factor for endothelial inflammation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Microplásticos/efeitos adversos , Plásticos/efeitos adversos , Poliestirenos/efeitos adversos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Ácidos Carboxílicos/efeitos adversos , Linhagem Celular , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo
17.
Sci Rep ; 11(1): 22438, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789869

RESUMO

Microplastics (MPs), a new class of pollutants that pose a threat to aquatic biodiversity, are of increasing global concern. In tandem, the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causing the disease chytridiomycosis is emerging worldwide as a major stressor to amphibians. We here assess whether synergies exist between this infectious disease and MP pollution by mimicking natural contact of a highly susceptible species (midwife toads, Alytes obstetricans) with a Bd-infected reservoir species (fire salamanders, Salamandra salamandra) in the presence and absence of MPs. We found that MP ingestion increases the burden of infection by Bd in a dose-dependent manner. However, MPs accumulated to a greater extent in amphibians that were not exposed to Bd, likely due to Bd-damaged tadpole mouthparts interfering with MP ingestion. Our experimental approach showed compelling interactions between two emergent processes, chytridiomycosis and MP pollution, necessitating further research into potential synergies between these biotic and abiotic threats to amphibians.


Assuntos
Batrachochytrium , Larva/microbiologia , Microplásticos/efeitos adversos , Poluentes da Água/efeitos adversos , Animais , Anuros , Biodiversidade , Suscetibilidade a Doenças/etiologia , Salamandra , Espanha
18.
Front Endocrinol (Lausanne) ; 12: 724989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484127

RESUMO

The ubiquitous exposure of humans to microplastics (MPs) through inhalation of particles in air and ingestion in dust, water, and diet is well established. Humans are estimated to ingest tens of thousands to millions of MP particles annually, or on the order of several milligrams daily. Available information suggests that inhalation of indoor air and ingestion of drinking water bottled in plastic are the major sources of MP exposure. Little is known on the occurrence of MPs in human diet. Evidence is accumulating that feeding bottles and medical devices can contribute to MP exposure in newborns and infants. Biomonitoring studies of human stool, fetus, and placenta provide direct evidence of MP exposure in infants and children. MPs <20 µm were reported to cross biological membranes. Although plastics were once perceived as inert materials, MP exposure in laboratory animals is linked to various forms of inflammation, immunological response, endocrine disruption, alteration of lipid and energy metabolism, and other disorders. Whereas exposure to MPs itself is a concern, MPs can also be sources of exposure to plastic additives and other toxicants. Exposure of human cell lines to MP additives such as phthalates, bisphenols, and organotins causes adverse effects through the activation of nuclear receptors, peroxisome proliferator-activated receptors (PPARs) α, ß, and γ, and retinoid X receptor (RXR), leading to oxidative stress, cytotoxicity, immunotoxicity, thyroid hormone disruption, and altered adipogenesis and energy production. The size, shape, chemical composition, surface charge, and hydrophobicity of MPs influence their toxicity. Maternal transfer of MPs to the developing fetus has been demonstrated in exposed laboratory animals and through the analysis of human placenta. In laboratory animal studies, maternal exposure to MPs altered energy and lipid metabolism in offspring and subsequent generations. Moreover, concomitant with the global increase in plastics production, the prevalence of overweight and obesity in human populations has increased over the past five decades, and there is evidence to support the hypothesis that MPs and their additives are potential obesogens. Even though MP exposures are ubiquitous and toxic effects from such exposures are a concern, systematic studies on this topic remain urgently needed.


Assuntos
Microplásticos/efeitos adversos , Obesidade/patologia , Sobrepeso/patologia , Animais , Humanos , Obesidade/etiologia , Sobrepeso/etiologia
19.
Biomolecules ; 11(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207836

RESUMO

Environmental plastic wastes are continuously degraded to their micro and nanoforms. Since in the environment they coexist with other pollutants, it has been suggested that they could act as vectors transporting different toxic trace elements, such as metals. To confirm this, we have assessed the potential interactions between nanopolystyrene, as a model of nanoplastic debris, and silver compounds (silver nanoparticles and silver nitrate), as models of metal contaminant. Using TEM-EDX methodological approaches, we have been able to demonstrate metal sorption by nanopolystyrene. Furthermore, using Caco-2 cells and confocal microscopy, we have observed the co-localization of nanopolystyrene/nanosilver in different cellular compartments, including the cell nucleus. Although the internalization of these complexes showed no exacerbated cytotoxic effects, compared to the effects of each compound alone, the silver/nanopolystyrene complexes modulate the cell's uptake of silver and slightly modify some harmful cellular effects of silver, such as the ability to induce genotoxic and oxidative DNA damage.


Assuntos
Nanopartículas Metálicas/toxicidade , Microplásticos/efeitos adversos , Poliestirenos/toxicidade , Transporte Biológico , Células CACO-2 , Dano ao DNA/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Microplásticos/química , Nanopartículas/toxicidade , Nanoestruturas/química , Nanoestruturas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poliestirenos/química , Prata/farmacologia , Nitrato de Prata/farmacologia
20.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072552

RESUMO

Indirect evidence has determined the possibility that microplastics (MP) induce constipation, although direct scientific proof for constipation induction in animals remains unclear. To investigate whether oral administration of polystyrene (PS)-MP causes constipation, an alteration in the constipation parameters and mechanisms was analyzed in ICR mice, treated with 0.5 µm PS-MP for 2 weeks. Significant alterations in water consumption, stool weight, stool water contents, and stool morphology were detected in MP treated ICR mice, as compared to Vehicle treated group. Also, the gastrointestinal (GI) motility and intestinal length were decreased, while the histopathological structure and cytological structure of the mid colon were remarkably altered in treated mice. Mice exposed to MP also showed a significant decrease in the GI hormone concentration, muscarinic acetylcholine receptors (mAChRs) expression, and their downstream signaling pathway. Subsequent to MP treatment, concentrations of chloride ion and expressions of its channel (CFTR and CIC-2) were decreased, whereas expressions of aquaporin (AQP)3 and 8 for water transportation were downregulated by activation of the mitogen-activated protein kinase (MAPK)/nuclear factor (NF)-κB signaling pathway. These results are the first to suggest that oral administration of PS-MP induces chronic constipation through the dysregulation of GI motility, mucin secretion, and chloride ion and water transportation in the mid colon.


Assuntos
Constipação Intestinal/diagnóstico , Constipação Intestinal/etiologia , Microplásticos/efeitos adversos , Fenótipo , Poliestirenos/efeitos adversos , Animais , Comportamento Animal , Biomarcadores , Fenômenos Químicos , Cloretos/metabolismo , Colo/patologia , Colo/ultraestrutura , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hormônios Gastrointestinais/metabolismo , Motilidade Gastrointestinal , Bombas de Íon/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Microplásticos/química , Mucinas/metabolismo , Poliestirenos/química , Transdução de Sinais , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA